Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1

Abstract

Gene transfer into hematopoietic stem cells has been used successfully for correcting lymphoid but not myeloid immunodeficiencies. Here we report on two adults who received gene therapy after nonmyeloablative bone marrow conditioning for the treatment of X-linked chronic granulomatous disease (X-CGD), a primary immunodeficiency caused by a defect in the oxidative antimicrobial activity of phagocytes resulting from mutations in gp91(phox).

We detected substantial gene transfer in both individuals’ neutrophils that lead to a large number of functionally corrected phagocytes and notable clinical improvement.

Large-scale retroviral integration site-distribution analysis showed activating insertions in MDS1-EVI1, PRDM16 or SETBP1 that had influenced regulation of long-term hematopoiesis by expanding gene-corrected myelopoiesis three- to four-fold in both individuals.

Although insertional influences have probably reinforced the therapeutic efficacy in this trial, our results suggest that gene therapy in combination with bone marrow conditioning can be successfully used to treat inherited diseases affecting the myeloid compartment such as CGD.

Read the full publication here.

Related Publications

Discover more publications from the GeneWerk team

Systematic comparative study of computational methods for…

Abstract High-throughput sequencing technologies have exposed the possibilities for the in-depth evaluation of T-cell...
View

Real-Time Definition of Non-Randomness in the Distribution…

Abstract Features such as mutations or structural characteristics can be non-randomly or non-uniformly distributed...
View

Preclinical evaluation of efficacy and safety of…

Abstract A previously published clinical trial demonstrated the benefit of autologous CD34(+) cells transduced...
View

Polyclonal long-term repopulating stem cell clones in…

Abstract Hematopoietic bone marrow stem cells generate differentiated blood cells and, when transplanted, may...
View

Want to get in touch?

Click the button below if you want to find out more about the services
we offer or discuss your next project.

Contact us
I agree to the Privacy Policy and Terms of Service.